Neutron dose equivalent measured at the maze door with various openings for the jaws and MLC.

نویسندگان

  • M Krmar
  • M Baucal
  • N Bozic
  • N Jovancevic
  • O Ciraj-Bjelac
چکیده

PURPOSE This study was undertaken to explore the effects of the jaws and the MLC openings on the neutron dose equivalent (DE) at the maze door and neutron flux at the patient plane. METHODS The neutron dose equivalent was measured at the maze entrance door of a 15 MV therapy linear accelerator room. All measurements were performed using various field sizes up to 40 cm × 40 cm. Activation detectors constructed from natural Indium (In) were exposed at Cd envelope to neutrons in order to estimate relative changes of epithermal neutron fluences in the patient plane. RESULTS Our study showed that the dose equivalent at the maze door is at the highest when the jaw are closed and that maximal jaws opening reduces the DE by more than 20%. The neutron dose equivalent at the maze door measured for radiation fields defined by jaws do not differ significantly from the DE measured when MLC determines the same size radiation field. The epithermal capture reaction rate measured using different jaw openings differs by approximately 10%. When an MLC leaf is inserted into a fixed geometry for one opening of the jaws, an increase of the epithermal neutron capture reaction rate in Indium activation detectors was observed. CONCLUSIONS There is no significant difference in the neutron DE when MLC defines radiation field instead of jaws. This leads to the conclusion that the overall number of neutrons remains similar and it does not depend on how primary photon beam was stopped-by the jaws or the MLC. An increase of the fast neutron capture reaction rate when MLC leaves are inserted probably originates from the neutron scattering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neutron Contamination Unexpected Dose in Varian LINAC

Introduction: Neutron contamination is very harmful for the patients receiving radiation therapy due to the high relative biological effect of neutrons. Medical linear accelerators head are made up of materials with high atomic numbers, and High-energy photons interaction with heavy materials can produce neutron contamination. In this study, neutron equivalent dose, neutron spe...

متن کامل

The neutron dose equivalent evaluation and shielding at the maze entrance of a Varian Clinac 23EX treatment room.

PURPOSE To evaluate the neutron and photon dose equivalent rate (H(n,D) and H(G)) at the outer maze entrance and the adjacent treatment console area after the installation of a Varian Clinac 23EX accelerator with a higher beam energy than its predecessor. The evaluation was based on measurements and comparison with several empirical calculations. The effectiveness of borated polyethylene (BPE) ...

متن کامل

Assessment of secondary neutron dose due to dental restorations in head and neck radiation therapy

Introduction: One of scientific concern is increasing of unwanted neutron dose to the patient, in head and neck radiation therapy due to the presence of some isotopes in dental restorations and head of medical linac. The aim of this study is to measure the equivalent dose of thermal and fast neutron due to head of Siemens Primus Linac and a healthy tooth, Amalgam, Ni-Cr alloy a...

متن کامل

Investigation of LINAC Structural Effects on Photoneutron Specified Parameters Using FLUKA code

Introduction: The utilization of high-energy photons in the medical linear accelerator can lead to photoneutron production. This study aimed to evaluate the effect of the physical components of the head, including flattening filter (FF) andmultileaf collimator (MLC), as well as the dependence of therapeutic field size on the photoneutron spectrum, dose, and flux. <str...

متن کامل

Cancer Risk Assessment due to Accidental Exposure inside Neutron Laboratories using BEIR VII Model

Introduction: Environmental and occupational human exposure from neutron source can lead to the serious biologic effects. The aim of this study is to evaluate the cancer incidence risk for various human organs at different neutron dose levels due to exposure from an Americium-241/Beryllium (Am-241/Be), a standard neutron source for calibration purposes. Material and Methods: We measured ambient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 39 3  شماره 

صفحات  -

تاریخ انتشار 2012